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A calculation is made of the turbulent transport terms (third moments) that occur 
in the Reynolds stress equation for buoyant and/or sheared fluids. This calculation 
is based on neglect of a two-time fourth-order cumulant - a weaker approximation 
than neglect of the usual single-time fourth-order cumulant. The previously used 
eddy-damping assumption for single point moments is avoided. This assumption is 
then examined critically. Comparison is afterward made between the turbulent 
transport terms derived here and those derived previously by the eddy-damping 
method, and between the respective derivations. Also the dissipation of third 
moments is calculated. The calculation is formally limited to mean quantities which 
vary but slowly in space and time, and to small anisotropy. 

1. Introduction 
As is well known, second-order modelling (also called single-point modelling) 

begins with an equation for second-moments in terms of third moments -the 
Reynolds stress equation. Included among the third moments are turbulent 
transport terms (diffusion of kinetic energy fluctuations and diffusion of thermal 
energy fluctuations) and the pressure-strain term. The task of theory is to express 
these third moments in terms of second-moments - the closure problem. Our article 
concerns the transport terms. One method for calculating transport terms is based 
on the eddy-damped quasi-normal (EDQN) approximation as applied to single-point 
moments (Hanjalid & Launder 1972; Lumley, Zeman & Seiss 1978; Zeman & Lumley 
1976; Andre' et al. 1978), which differs from the EDQNM as applied to two-point 
moments (Orszag 1970). This single-point method has had significant success but, 
more recently, its basic assumptions have been called into question for inhomo- 
geneous flows (Deardorff 1978; Wyngaard 1979; Zeman 1981) ; e.g. Wyngaard 
(1979) found a significant discrepancy for eddy damping. The purpose of our paper 
is to present an alternative method for calculating transport terms and, at the same 
time, in the course of this calculation, to help assess the validity of the eddy-damping 
assumption for single-point moments. Specifically, we calculate the third moments in 
a direct, somewhat more rigorous fashion that avoids that assumption. 

The method we use is based on the neglect of a two-time fourth-order cumulant 
(Chandrasekhar 1955 ; Kraichnan 1957) an approximation that differs from the 
quasi-normal neglect of single-time fourth-order cumulants (e.g. Hanjalid & Launder 
1972; Proudman & Ried 1954). Discussion of this approximation is given in $2. A 
similar method was used to  calculate the pressure-strain term (Weinstock 1981, 
1982, 1986 ; Weinstock & Burk 1985). Experience with sophisticated turbulence 
theory is neither required nor expected. Very briefly, this method is based on a 
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straightforward, formal integration of the Navier-Stokes equation that permits one 
to express singlc-time third moments in terms of two-time fourth moments. The two- 
time fourth moments are then evaluated by neglect of two-time fourth-order 
cumulants. This procedure will be seen to avoid the basic assumptions inherent in the 
eddy-damping method. We also hope that this treatment may be accurate as an 
application of two-point closures since we need mainly the energetic part of spectra 
a t  short times where two-point closures are least controversial. 

To help clarify the theory and display its own underlying approximations, the 
following simplifying assumptions are made : ( a )  all average quantities are assumed 
to vary slowly in space and time compared to Lo and rL, respectively, where Lo is the 
characteristic lengthscale of the energy-containing part of the spectrum and rL is a 
Lagrangian timescale ; ( 6 )  small anisotropy ; ( c )  average quantities may vary in only 
the vertical direction (horizontal stratification) ; ( d )  a unidirectional mean flow of the 
form CJ = [Uo(x3) ,  0, 01 with Cartesian coordinates [x l ,  x p ,  x,]. 

The paper is organized as follows : the turbulence transport terms (third-moments) 
are derived in 92, the eddy-damping assumption is discussed in $3, the dissipation of 
third moments is derived in 94, and a fourth-order cumulant is modelled in $ 5 .  
Section 6 contains a comparison between our derivation of transport terms and the 
EDQN derivation, and a summary is given in $ 7 .  Details of most proofs are given in 
Appendices D, E, and F, copies of which can be obtained from the Journal of Fluid 
Mechanics editorial office or the author. 

2. Calculation of fluxes 

of the temperature cquation are 
The transport terms that appear in the Reynolds stress equation and in moments 

where u = u ( x ,  t )  is the velocity fluctuation a t  position x and time t ,  6 = 6 (x, t )  is the 
potential temperature fluctuation at x and t ,  subscript 3 denotes the vertical 
component, and the angular brackets denote an ensemble average. Our goal is t o  
calculate these third moments in terms of second moments. We consider (u, uu) first. 

To calculate ( u 3  uu) we utilize the Nnvier-Stokes equation. The fluctuation part 
of that equation is given by 

-+vv2 u = -(u*vu)'-u*vu-u.vu----, VP go 
( i t  1 Po 0 0  

where p is the pressure fluctuation, g is the acceleration of gravity, po is the 
mean particle density, and v is the molecular viscosity. The molecular dissipation 
term has been placed on the left-hand side for later convenience, and we defined 
(u.Vu)' = ( u - V U )  - ( u s  WU) for notational convenience. 
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Formal integration of this equation yields 

u(t) = G,(t)  ~ ( 0 )  - dt, G,(t - tl)  [ (U - VU)’ + U .  VU + I(tl)], ( 2 . 3 ~ )  Jo 
I @ , )  = -+u-VU+-- ,  V P  go 

PO 0 0  

(2.36) 

G,(t)  = exp ( - vV2t),  (2.4) 

where it is understood that u, p ,  8, and U in the integrand are all evaluated a t  time 
t ,  (e.g. u = u(tl) in the integrand of (2.3)), and we have separated (u-Vu)’+ U-Vu 
from I(t l)  for later convenience. Equation (2.3) can be verified by differentiating both 
sides and comparing with (2.2) - as is shown in Appendix A. This equation will allow 
us to easily evaluate the influence of molecular dissipation in a rigorous fashion. 

Substitution of the 3-component of (2.3) for u3 in (u3uu) we obtain an equation 
for (u3uu).  Two other equations for (u3uu) are obtained by substitution of (2.3) for 
the first and second u in (u,uu), alternately. The sum of all three equations is 

S(U,UU) = IV- A(t,t,)+(1.+Tr)(u3(t)u(t)G,(t-t,)I(t,)) 

+ (u(t)u(t)G,(t-t,)I,(t,) )I> (2.5) 

and all the terms containing U -  V collectively vanish because their sum is of the form 
U.V(u,uG,u), a form that is zero since U is along the x1 direction while (u,uG,,u) 
varies only with x3.  The initial-value term is henceforth neglected since,when divided 
by (u3(t) u(t) u( t ) ) ,  it decays towards zero as t increases. The timescale for this decay 
is, in the absence of buoyancy or viscosity, the Eulerian timescale (kov0)-l  (e.g. 
Weinstock 1981), where k, = 2n/L0 is a wavenumber characteristic of the energy- 
containing scales and vo is the r.m.s. velocity fluctuation - and a large tkovo limit in 
(2 .5)  conforms to our basic assumption of small variations on a Lagrangian (or 
Eulerian) timescale. Equation (2.5) determines (u, uu) in terms of the two-time third 
and fourth moments A(t ,  t , ) ,  (uuG,Vp), and (u,uG,O). This equation does not occur 
in the eddy-damping approach, nor do two-time moments. 

To achieve closure of (2.5), the two-time moments on the right-hand side must be 
expressed in terms of single-time second moments. We consider A(t, t l )  first. An 
expression for 
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based on a two-point closure and cumulant expansion, is derived in Appendix B 
and given as follows: 

f dtlA(t, t l )  = 7,A0+ 1 dt, Q ( 4 ) ( t - t l ) ,  
0 0 

a a 
8x3 ax3 

A' = (w:) - (UU) + (1 + T,) (u, U) - (u, u), 

(lIi/4) (6s/q2)  (1 + R ; l )  
70 (17/2)N2H(N2)+(6e/42)2(1+R;1)2' 

SB.1 

(2.7) 

(2.8) 

(2.9) 

where R, is a Reynolds number 

R, = ( 4 / Z 7 ) ~ u 0 / v k 0 ) .  

Q 4 ( t - t , )  is the cumulant of A ( t , t , )  - a two-time fourth-order cumulant, c: is the 
dissipation rate of kinetic energy density, q2 = ( u - u )  is twice the kinetic mergy 
density, N = (soil a@,/ax,); is the Brunt-Vaisala frequency, (uu)  = (u( t )  u ( t ) )  is the 
single-time second moment, 70 is the correlation time (decay time) of A(t, t,), and H 
is the Heaviside step function ( H  = 1 when N 2  2 0, and H = 0 when N 2  < 1). The 
decay time 70 includes the influence of stable buoyancy and viscosity on turbulence 
decay (e.g. Weinstock 1978; Lumley et al. 1978, $ 3 )  and t>he H-function rcflects the 
fact that unstable buoyancy does not influence the correlation time in an explicit 
manner. This influence of molecular viscosity v comes from the term G,,( t - t , )  and is 
very small when the Reynolds number R, is large. 

In  a similar fashion it is shown in Part  2 of Appendix B that. to first order in mean 
field gradients, the integrals of the other two-time functions in ( 2 . 5 )  can be expressed 
in terms of single-time functions given by 

[ d t 1 ( u 3 ( t )  u(t)  G u ( t - t l )  v p ( t l ) )  70(u3uv1?); 

ldt1(u3(t)  u(t )  G v ( t - t l )  u ( t l ) )  7 0 ( u 3 U U ) ;  

p t S u , ( t )  uft) G,(t- t , )  ev,) = To(u,u@); 

etc. provided that mean values vary slowly on timescales T ~ ,  and 
than 70. Substitution of these relations into (2 .5) ,  and neglecting 
term when t is large, our expression for (u, uu) becomes 

t is much larger 
the initial-value 

+ ( 1  + T,) ((u, uu) - V U+ (u, u0) dt, Q ( 4 ) ( t  - t,). (2 .10)  

The basic approximation we make in this equation is to neglect the fourth-order 
cumulant term 

[dt, Q ( " ( t - 4 )  

in comparison with 7,A0. This neglect, suggested by Chandrasekhar (1955) and 
analysed by Kraichnan (1957), might be weaker than neglect of the single-tcrm 



A theory of turbulent transport 323 

fourth-order cumulant Qc4)(0) in quasi-normal theory (e.g. Proudman & Reid 1954 ; 
Lumley et al. 1987) since Q ( 4 ) ( t - t , )  is a two-time cumulant and decays as t-t ,  
increases. On the one hand, neglect of Q ( ' ) ( t - t , )  does not violate realizability as does 
neglect of Q(4)(0) in quasi-normal theory, while, on the other hand, as pointed out by 
a reviewer, Q ( 4 ) ( t - t 1 )  neglect is, itself, flawed since it causes non-conservative energy 
transfer by nonlinear interactions (Kraichnan 1957). Nevertheless, although inexact, 
there is evidence that this neglect gives reasonable results since it is basic to 
contemporary closure theories such as the direct interaction approximation 
(Kraichnan 1959) which gives reasonable results - particularly for the energy- 
containing scales. A correction for non-negligible Q(') is suggested in $5. 

To evaluate the pressure-stress correlations in (2.10) we use the well-known 
incompressibility expression for p obtained by taking the divergence of (2.2) : 

p = + p'u' + p ( f l )  1 

V2p'S) = - v . (u .  VU)', V2p'U) = - 2vu : v u, 
(2.11) 

where pcs)  is referred to as the slow part of p ,  and p(O and p") are referred to as fast 
parts since they respond immediately to changes of U or O0, respectively. 
Substituting (2.11) into the pressure correlations of (2.10) we obtain the three sets of 
terms corresponding to the slow and fast parts of p :  

The slow terms are calculated in Appendix D in the limit of weak inhomogeneity and 
weak anisotropy, and are found to be given by 

n@) = f.AO, I fi il  -g 1, (2.13) 

where fii are numerical constants whose magnitudes are all much less than unity. In  
fact I fijl < 0.1. Consequently, the slow pressure term is much smaller than Ao and can 
be safely neglected in (2.10) - a t  least for the ease of weak inhomogeneity. This 
smallness of ncs) contradicts the eddy-damping approximation. A discussion of eddy 
damping and its comparison with (2.10) and (2.13) is given in $03 and 6. 

Turning our attention to the rapid buoyancy part of (2.12), this part was 
previously obtained by Lumley et al. (1978). (We verified their expression in an 
approximate way by a cumulant-neglect calculation.) The expression is quite close 
t,o 

(2.14a) 

With regard to  the rapid shear term IFu) ,  it  can be formally expressed as (see 
Part 1 of Appendix E) 

where u$(k) denotes the Fourier transform of u3(x)  a t  Fourier wavevector k (the 
undaggered quantities u3 and u1 are not Fourier transformed). This k-integral is too 
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difficult to evaluate, except in the asymptotic limit of small mean gradient 
magnitudes - small 1~~aU,/ax,l and 1T;gS;l aO,/ax,l - and small anisotropy. In  that 
limit it is shown in Appendix D that 

ncU) = -;(?xi) (VU+VUT)+60, (2.14b) 

where BUT denotes the transpose of VU, and So denotes terms of order (aUo/ax,)z and 
(aU0/ax3) (ae,/ax,). We do not know how ll7~~)l will vary with increasing anisotropy 
or increasing (70 aUo/ax,)2 ; whether or not it will increase. There is some evidence 
that Il7iy)l may be large for strong shears in the planetary boundary layer (Wyngaard 
1979, $5) and a crude theoretical estimate of 6,, applicable when stratification is 
negligible, is 6, - -70(i3U0/i3z,)2 (u:) [/- (4/5) iz a,], where /denotes the unit dyadic. 
Consequently, we use (2.14b) but keep in mind that it may be very poor when 
(70aU0/ax3)2 is not small. 

Finally, substitution of (2.12) and (2.14a, b )  in (2.10) and neglecting Q(4) - our 
basic cumulant,-neglect approximation - yields the flux (u, uu) in the desired form : 

8 g A' + $( 1 + T,) (u, uO) - + ~ ( u u O )  3 
0 0  0 0  

+ (1 + T,) ((u, uu) V U - E ( U ; )  V U ) ]  , (2.15) 

neglecting 6,. This equation determines (u3uu) in terms of (uuO) and the second- 
moment term AO. Although derived from different considerations, (2.15) is similar to 
equation (18) obtained by Lumley et al. (1978) in their application of the eddy- 
damping quasi-normal approximation. One difference is that molecular viscosity 
occurs only in the relaxation time 70, a formulation of viscosity which simplifies thc 
analysis of fluxes a t  the end of this section. Minor differences are that (2.15) includes 
VU and that 70 depends on N 2 .  The latter dependence causes a stronger influence of 
stratification on fluxes. However, the difference of most interest to us - between 
(2.15) and (18) of Lumley et al. or (A5)  of Hanjalid & Launder (1972)-is in the 
underlying approximations of the respective derivations. Comparison of these 
approximations is made in §§3  and 6. 

To close (2.15), (uue) must be expressed in terms of second moments. Such an 
equation is derived by substitution of the thermodynamic equation (potential 
temperature equation) for 0 into (uuO), and, in addition, substitution of (2 .3 )  for u. 
The derivation is entirely similar to the derivation of (2.10). The details of this 
derivation are given in Part 1 of Appendix F, together with outlined, similar 
dcrivations of ( ~ 1 9 0 )  and (03). The results for the case t 9 70 are 

3+0) = - T o  [A(#) + ( 1  + T,) ( U V ~ O )  + (uee) + (oUU). v u 
0 0  1 

+ ( U U U ) - ~ @ , ] -  [ dt, W " ( t - t , ) .  (2.16) 

Po 

0 

dt, QcH2) ( t - t , ) ,  (2.17) - J o  
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ax3 8x3 

(A(*’)) = (us U )  - (0’) + 2(u3 8 )  - (ue),  
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(2.19) 

(2 .20)  

(2 .21 )  

where Qc8)( t - t1 ) ,  Q‘”)(t- tl), and &(@‘)( t - - t l )  are fourth-order cumulants of 

respectively. Our basic approximation is to neglect these two-time fourth-order 
cumulants in (2.161, (2 .17)  and (2 .18 ) .  Implications of our approximations are 
considered in $4. 

Each pressure term in (2.16) and (2 .17)  has three parts - p @ ) ,  P ( ~ ) ,  and p(@),  the 
slow, rapid mean shear, and rapid buoyancy parts of p given by (2 .11) .  The slow 
parts of the pressure terms are calculated in Part 2 of Appendix F. They are given 

( 2 . 2 2 ~ )  

by 
1 

Po 

1 

Po 

(1 + T,) - (uVp‘”’e) = f - A(@, 

(2.22 b )  - (@Vp(S)) = i,. f .A(@) 

where the fij, the same as in (2 .13 ) ,  have very small magnitudes (less than 0.1) and 
both sides of these equations are evaluated for very small anisotropy. These Vl,(’) 
correlations are negligibly small - in contradiction to the eddy-damping assumption. 

The rapid mean shear terms are calculated in Part 2 of Appendix F for the case of 
asymptotically small mean gradients and anisotropy. There i t  is found that 

1 

Po 
( ~ + T , . ) - - ( U V ~ ‘ ~ ’ B )  N - ~ ( u : O )  (VU+VUT), ( 2 . 2 3 ~ )  

(2 .233)  

The rapid buoyancy terms were calculated by Lumley et a l .  (1978), approximately. 
In  vector notation, their equations (16) and (8) are 

(2 .24)  

where / is the identity matrix (Iik = dik). 
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Substituting (2.22)-(2.25) into (2.16) and (2.17), and neglecting two-time fourth- 
order cumulants, we obtained the desired expressions : 

g I  9 
0, 5 0 0  

3(UU8) = - 7, + &( 1 + T,) ( U O 2 )  -+ - (u,  8') 3 + (UUU) - VO, 
1 

+ (1 + T,) ((Ouu) - V U-Q(u$O)V U ) ]  , (2.26) 

3(u8') = -7, A("') +i(03) -+ g ~ ( O U U )  .VO, +2(Ozu) * V U ]  , [ (2.27) 

(2.28) 

0 0  

(83) = -7,[A(H3)+(82u).V00]. 

Equations (2.26), (2.27), and (2.28) together with (2.15), constitute a closure; i.e. this 
set of equations determines the third moments in terms of second moments (the 
second moments are contained in A,  A(@', A('') and A(@)) .  A similar set of equations 
was first derived by Lumley et al. (1978). The differences are in the dissipation terms, 
relaxation time (denoted here by 7,) and inclusion of a mean shear aside from the 
method of derivation - as discussed in the next paragraph. A substantive 
disagreement occurs only in the respective equations for (8,). 

All that remains is to solve this set of equations for the individual fluxcs (u,uu), 
(uu~), and (UP) in terms of second moments-a straightforward task since the 
equations are linear in the fluxes. The solution is conveniently displayed in the 
matrix format used originally by Lumley et al. (1978) : 

(4)' [ (u;> ::%3)]=- Eil g 5  0 0 A ,  A ,  0 A ,  O ][::)I> (2.29) 

A ,  0 0 A ,  0 A,,  (u,8)' 
(u3 e2> 0 A,,  0 A,, (ule)' 

where the coefficients A,-A,, are written out in Appendix C and, for simplicity, terms 
of order ( g / 0 , ) 2  and (g/O,) (aU,/ax,)' are neglected in A,-A,  the coefficients of 
(u, u:). These expressions for A,-A,, are put in an Appendix rather than given here in 
order to  avoid distraction from our additional purpose. This purpose is to compare 
our method of derivation with the EDQN methods of Hanjalid & Launder (1972) and 
Lumley et al. (1978), and to use the comparison to help assess the eddy-damping 
assumption. Before turning our attention to this purpose we note that, as previously 
mentioned, there are also differences in the dimensionless numerical coefficients, 
which is to be expected since our coefficients are determined in an independent 
fashion - as integrals over products of spectra. In  particular, the two principal 
coefficients are &fO(0) (Lumley et al. refer to it as 7,) and the coefficient of terms first 
order in g/O,.  We obtain $,(0) = 0.05 q 2 / E ,  where q, = (usu), while Lumley et al. 
obtain +,(O) = 7, x 0.1 q2 /e .  An empirical determination by Hanjalid & Launder 
(1972) gives $,(O) x 0.04 q 2 / e  (more precisely Hanjalid & Launder give 57, = 

0.08 E / E  where E = a q'). These values of 7, all lie within a factor of about two of each 
other. The differences in 7, are small considering the different, independent methods 
used. As for the coefficients of leading g/O, terms, ours exceeds theirs by a factor of 
about three for stable stratification, but is comparable to theirs for unstable 
stratification - with the difference for stable stratification due to the suppression of 
autocorrelation decay time 7, by stable buoyancy as described in (2.9). 
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Let us next compare the two different derivations of transport terms and focus our 
attention on the eddy-damping approximation and its consequences. 

3. Validity of eddy-damping approximation 
Equation (2.13) contradicts the eddy-damping approximation for single-point 

moments since it shows lI7j:)l to be negligibly small, in the limit of weak 
inhomogeneity at least. The formal connection between (2.13) and the eddy-damping 
approximation may need clarification because that approximation is not usually 
expressed in terms of AO, but rather is stated in the form 

ncs) = c;'? E (us uu) (eddy-damping approximation), (3.1) 

where c, is a proportionality constant empirically determined to be about 0.08 and 
E = $ q2 is the turbulence kinetic energy density. 

Let us consider the connection between this relation and the inequality (2.13) for 
the case of zero 8 and negligible mean velocity terms-the case considered by 
Hanjalid & Launder (1972). In that case (2.15) reduced to 

3 
-(u,uu) = -Ao (theory). 
270 

The same expression is implicit in Kanjalid & Launder (see their Appendix). Now, it 
can be seen, by combination of (3.2) with inequality (2.13) and 27,/3 % c,E/c,  that 

This inequality was derived entirely by theory and disagrees, formally, with the 
eddy-damping approximation - for weakly inhomogeneous turbulence. 

Since ncS) is so relatively small there appears to be no need a t  all for the eddy- 
damping approximation of single-point triple moments - the case considered here. 
The questions that remain are why the EDQN equation is comparable with our (2.15) 
when the former relies on eddy damping whereas the latter does not, and why eddy 
damping is very useful for two-point moments (the kind of moments considered by 
Orszag 1970; Cambon, Jaendel & Mathieu 1981) but not for single-point moments. 
These questions are discussed in $6. First we point out a non-trivial consequence of 
(2.13) or (3.3) for dissipation. 

4. The magnitude of dissipation 
Thus far, we have not made use of the transport equation for (u,uu) - a 

fundamental equation and the starting place for the EDQN method. This equation 
should supply us with additional information since it includes short scales 
(dissipation) as well as larger scales, whereas (2.15) is biased towards larger scales by 
virtue of the time integration in its derivation (the time integration in (2.5) brings 
down a correlation time on the order of k-'u;' as shown in Appendix B. The 



328 J .  Weinstock 

additional information is readily found by writing down the transport equation and 
(2.15) in the concise forms 

dt, Qc4),(t-t1) (present theory), (4.2) 's 3 

70 70 o 
-(u,uu) = -[AO+n'S'+fl-- 

where D, = v(uuV2u,) + 2v(u, uV2u) denotes the dissipation term of our third 
moment (u, uu) and F denotes all the mean field terms including the fast parts of Il ; 
i.e. F = (1 +T,) ((u,uu).VU+(u,uB)g/O,)+(u,uu)g,/Oo+Il(U)+n('),. The trans- 
port equation (4.1) is formally exact, whereas (4.2) was derived under the restriction 
(approximation) that all mean quantities vary but slowly on an Eulerian integral 
timescale and that t exceeds 7,. 

in comparison with 
AO, combination of (3.3) and (4.1) yields 

3 
-(u,uu) = D,+Q'4'(0)-- dtQ(4)(t-tl), 
7 0  70 o 

In  the limit of constant flux and use of (2.13) to neglect 

(4.3) ' S  
which relates (u,uu) to D, and Q(4)(t-tl); and we emphasize that (4.3) is justified 
for constant flux, weak inhomogeneity and slow variation of mean quantities. 

This equation provides a possible determination of the dissipation, a quantity that 
is not known accurately from experiment or theory. It all depends on the magnitude 

If Q(",(t-t,) is sufficiently smaller than A' a t  all t-t,, then D, is determined by 
(4.3).With regard to the magnitude of Q(4)(0), experimental evidence indicates that 
it is significantly smaller than Ao in the convective atmospheric boundary layer 
(Wyngaard 1979). In  qualitative agreement with this experiment is a theoretical 
derivation by Lumley (1978) - albeit for a partly arbitrary moment generating 
function. These findings are not contradicted by Deardorff (1978). He found that the 
fourth-order cumulant Q(')(O) is not zero and makes an important contribution to 
scalar diffusion, but this finding does not conflict with our neglect of Q(4)(0) since 
mean fluxes were not constant in his calculation. Additionally, Q(')(O) was higher 
order in the inhomogeneity, sufficientsly small to be neglected by us ; i.e. 

of Q'4'(t - t,). 

(0)/&!3) (0) = O ( a 2 / @ ) ,  (4.4) 

where a = 3 In (u-u>/i3x3 is the reciprocal scale length of spatial inhomogeneity. A 
similar ordering was also found by Lumley (1978). The importance found by 
Deardorff for Q(') was to remove narrow 'spikes' of concentration that formed in a 
rapidly diffusing scalar source, a situation that is excluded by our constant-flux 
limitation. The importance of this finding for us is that the constant-flux-case theory 
can be defective when applied to rapidly varying fluxes. 

To determine D, we need 1 dt, Q(4)(t - t l )  

as well as Qc4)(0) to be negligible. The fact that  Qc4)(O) is small does not guarantee 
that Q(4) ( t  - t l)  is small for all t- t,, particularly for t - t, on the order of a correlation 
time. For present purposes we merely consider the relative smallness of (Q(4)(t-t,)l 
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a possibility to be proven or disproven a t  a later time. If lQ(')(t-t,)l is small then (4.3) 
does determine the dissipation ; it is given by 

1 se 
q 

D, = T ( u , u u )  (small1Q(')(t-t1)l), (4.5) 

where we used 70, x 6E/q2 from (B 7 )  (Appendix B). If desired, the value of D, can 
be expressed in terms of second moments by substitution of (2.15) for (u,uu). 

This simple looking result for D, is similar in form to the previous expression 
D, = (2S/3q2) (aij < q2 u,) + 6,,(q2uj) + 6,j(q2u,)) suggested by Zeman & Lumley 
(1976) from a different consideration. The principal difference is in the numerical 
coefficient. Our coefficient is about five times the previous (rough) estimate as can be 
seen by taking the trace of both expressions and comparing. Unfortunately, there is 
no available experiment, to our knowledge, that can verify this coefficient. Such an 
experiment would be invaluable to us; it would not only determine whether or not 
D, is correctly given by (4.5) but, by inference, would also confirm or deny the 
validity of the basic Q(')(t-t,) neglect. 

A final note about (4.5) is that it bears a formal relationship to the well-known 
expression for kinetic energy dissipation rate g = v(u .V2u):  

- 
e v(u*V2u) = - ( u * u ) .  
P2 

If the trace is taken of both sides of (4.5), and use is made of the nearly isotropic 
approximation v(u.uV2u,) w v(u,u.V2u) (e.g. Zeman & Lumley 1976) wc obtain 

6E 

q 
v(u,(u.V2u) = T ( u 3 ( u . u ) )  (small lQ(4)(t-tl)l) (4.7) 

which has the same form as (4.6), but with a greater coefficient. If valid, the greater 
coefficient suggests that third-moment spectra are relatively large a t  short scales ; i.e. 
the ratio of short scales to large scales is larger for third moments than for second 
moments. Equation (4.6) has been interpreted to mean that the destruction of large 
scales is a source of shorter, dissipative scales - a cascade. Such an interpretation of 
(4.7) is suggested by its derivation in which i t  is obtained by equating the large-scale- 
dominated (4.2) to the shorter-scale-containing (4.1). However, we emphasize that 
the accuracy of (4.7) is not certain since Q'"(t-tl) was assumed to be small. An 
experimental verification is required. 

5.  Fourth-cumulant model 

dissipation in 5 4, is neglect of the fourth-cumulant integral 
Our basic assumption for the derived transport equations in $2, and for the 

[dt, Q(')(t-tl), 
0 

In the event that this term is not small, a model for it is suggested by (4.3): 
namelv 

3 

0 70 
Q(')(O) -701 [dt, Q("(t-tl) = H- (u,uu). (5.1) 

where H is an undetermined dimensionless coefficient. Actually. this modcl is 
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analogous to the EDQNM one (Orszag 1970; see, particularly, cquation (2.7) of 
Cambon et al. 1981) with €I/?,, an eddy viscosity. The noteworthy difference is that 
they considered a fourth-order cumulant a t  two points in space whereas we consider 
a fourth-order cumulant a t  two points in time. The transport equation (2.15) could 
be corrected by first substituting (5.1) in (2.10). The corrected (2.15) is then obtained 
by replacement of (u,uu) with (1  -B) (u, uu) - assuming that Q(')(O) is small for 
small inhomogeneity . 

The corrected dissipation is given by substitution of (5.1) in (4.3) to yield 

3 

70 
D, = (1-B)-(u,uu). (5.2) 

The coefficient B is the only missing quantity of the theory and, from this 
perspcctive, it is this coefficient that is determined by comparison of theory with 
experiment. However, we caution that this model Q(4) pertains only to the case of 
constant flux or slowly varying flux. It docs not pertain to rapidly varying fluxes 
(c.g. Deardorff 1978). 

6. Comparison of two transport theories 
Finally we consider the seeming contradiction that has emerged about the EDQN 

approximation. This contradictiqn is as follows : on the one hand, (2.13) implies that 
the eddy-damping approximation is invalid, since it overestimates the magnitude of 
IFs), while, on the other hand, the overall EDQN equation of Hanjalid & Launder 
(1972) is in near agreement with our (2.15) for the case of 8 equal to zero. (We refer 
to their (2.3) with c, = 0.08.) To resolve this contradiction, we briefly rederive the 
EDQN equation and our (2.15) and show that they agree. A brief derivation is 
obtained from the constant-flux limit of (4.1) given by 

n(s) +D, + a(4yo) = - (A,,+/=). (6.1) 

The EDQN equation is derived from this by neglecting Q(')((O), and assuming that 
c ,  IIcs) = FLE-~(u,uu).  An additional, underlying assumption is that D, is smaller 
than IFs) in magnitude, i.e. that molecular damping is smaller than eddy damping 
(Hanjalid & Launder neglect D, altogether) - otherwise, if molecular damping were 
larger, there would be little necd for WS). With these assumptions, (6.1) reduces to 

c 
C S ' - ( U , U U )  = - [A0+/=]  (EDQN). 

q2 

This is the EDQN closure for third moments. In  comparison, the present theory is 
derived by neglecting Sdt, Q(') and showing to be small so that (4.2) reduces to 

3 
- ( ~ 3  UU) = - [Ao + F ]  
7 0  

(present theory). (6.3) 

Since csq2/e  % 3/r0, i t  is evident that the two methods give the same equation 
although one neglects ISs) and the other depends on ISs) as a major quantity. This 
contradiction can be resolved by consideration of the 'total ' damping D, + ISs). An 
expression for this quantity is given by substitution of (6.1) in (6.3): 

R 
3 n(s) + D, = - ( u, uu) . 
70 
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As long as (6.4) is satisfied, both methods will agree - as may be seen by substituting 
(6.4) into (4.1) and (4.2). 

Both methods do yield (6.4) for the ‘total’ damping, but for different reasons: the 
EDQN method takes D, to be negligible and assumes IFs) equals c ; ~ E ~ ~ ~ ( u , u u ) ,  
whereas we find the reverse for D, and W). Hence, both methods will give the same 
equation (6.4) although one treats n@) as a major quantity whereas the other treats 
(finds) to be negligible. Simply put, it is the ‘total’ damping that matters and 
both methods agree on this ‘total’. 

In  sum, what we have sought to  show is that  the EDQN method is correct because 
i t  gives the total damping IFs) + D, correctly - although empirically. Where i t  
appears to be wrong is that it attributes the total damping mainly to  II@) rather than 
to D,. However, we again caution that this conclusion is based on the assumed 
negligibility of fourth-order cumulants. 

Our conclusion, that molecular damping exceeds eddy damping, does not apply to 
the Fourier-space (two-point) case originally considered by Orszag (1970) since 
molecular damping was extremely small for the pertinent scales sizes - energy- 
containing and (much of the) inertial-subrange scales. The dominance of molecular 
over eddy damping is more tenable for the single-point-moments quantities 
considered by us since they include all scales including dissipation scales. In fact, one 
could argue that eddy damping should not exceed molecular dissipation since the net 
loss for single-point moments is by molecular dissipation. Eddy damping is not 
needed. 

7. Summary and conclusions 
Turbulence transport terms (third-moments) were calculated by a closure method 

that avoids the eddy-damping assumption. The approximation we do make is to 
neglect 

7i1 1 dt CF4) ( t  - t l )  

in comparison with A”. The calculation is also limited to small spatial inhomo- 
geneities, slow temporal variations on a Lagrangian timescale, and small 
anisotropy for evaluating n. Our conclusions are : 

< (3/7,,)1 (u,utuj)l in the limit of small 
inhomogeneity and small anisotropy. Consequently, eddy damping is not valid for 
third-moment quantities in real space; it is not even needed. 

(6) Molecular damping (dissipation) exceeds eddy damping for single-point 
moments. The relative values of these dampings are the reverse of the Fourier space 
case originally considered by Orszag (1970). That case pertained to relatively large 
scale sizes for which molecular damping is very small -energy-containing and larger 
scales of the inertial subrange. The dominance of molecular over eddy damping is 
understandable for single-point, single-time quantities since these quantities include 
dissipation scales. Physically, molecular damping should dominate since it is the net 
loss of real space fluxes. 

(a )  It is proven that 117$)I < IA:J, 

(c) The dissipation rate of third moments of velocity is derived to be 

D, = 18(~/q’) (u,uu), 

provided that Q(4) is negligibly small. The coefficient is 5 times larger than a previous 
estimate (e.g. Zeman & Lumley 1976). 
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( d )  The agreement between EDQN and our theory is attributed to a cancellation 
of errors regarding the ‘total’ dissipation rate I I@)+D,. Both mcthods give 
I I@)+D, = (3/7,J (u,uu). The difference is that the EDQN method assumes 
ID,[ Q IIIcs)I and = (3/7,,) (u, uu) (eddy damping), whereas the theory shows the 
reverse; i.e. IIIcs)I 4 ID/, and D, = (3/7,,) (u,uu). 

(e) In our view, the usual transport equation at constant flux determines 
dissipation and/or fourth-order cumulants rather than third moments. Third- 
moments are determined in a direct fashion by (4.2), a closure equation based on the 
time-integrated fluctuation part of the Navier-Stokes equation. 

( f )  In a practical application context, the fluxes calculated here are not entirely 
the same as those previously derived by the EDQN method since coefficients differ 
by factors of two or three and mean shear is included. However, our coefficients are 
approximate (as are the previous coefficients) since they depend on an assumed 
spectral shape -a  shape limited to large Reynolds number. 

( h )  The basic assumption of the theory is neglect of 

70, [ dt, Q(4)( t  - t , )  

which is justified if IBI < 1 and Qc4)(0) is small, and B is the only missing quantity of 
tjhe theory. From this perspective, it is B that  is determined by comparison of theory 
with laboratory experiment. 

A note of caution is that the entire calculation is formally limited to mean 
quantities that vary but little on Eulerian integral timescales and on lengthscales of 
energetic eddies. This limitation is common to single-point turbulence models. There 
seems no simple way of avoiding this limitation, but there is hope it may not be as 
restrictive as required by our derivation (cf. Lumley 1978 ; Weinstock 1986). The 
closure is defective for cases of very rapidly varying fluxes, such as the point-sources 
cases of Deardorff (1978), where the closure leads to spurious spikes of scalar 
concentration. However that particular defect may be corrected in the manner 
suggested by Deardorff - by accounting for a diffusive behaviour of Q(4)  when mean 
flux gradients are large. 

This work was funded by the Naval Environmental Prediction Research Facility, 
Monterey, CA under Program Element 62759N, Project WF59-651 ‘Model Output 
Statistics’. We are indebted to R.  H. Kraichnan and a referee for comments which 
changed our view about quasi-normality. 

Appendix A 
To verify (2.3), we take the derivative of both sides to obtain 

where I*(t , )  denotes the square-bracket term in the integrand on the right-hand side 
of (2.3). From the definition (2.4) we have 
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which is substituted in (A 1) to yield 

-- at - - ~ V 2 G c , ( t ) u ( o ) - I * ( t ) + ~ V 2 ~ ~ d t , G v ( t - t l ) I * ( t , ) .  

But (2.3) is 

which we substitute in (A 3) to obtain 

auo = -vV"(t)-I*@),  
at 
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(A 3) 

which is the Navier-Stokes equation (2.1).  Hence, (2.3) is equivalent to (2.1) ~a 
formal solution of (2.1). 

Appendix B 
R . l .  Derivation of (2.7) and (2.8) 

To derive (2.7) and (2.8) we need Fourier expand the velocities contained in 
A(t-t,). To account for turbulence inhomogeneity in this expansion it is convenient 
to take (uu) proportional to exp ( 2 a - x ) ,  where a is constant and directed along x3 
(i.e. a -x  = ax3). The derivation is valid for any form of weakly inhomogeneous 
turbulence when a is small compared to k,, the integral wavenumber. A simple model 
for this u is 

u(x)  = uo (x) exp (ax3) (B 1) 

where uo is statistically homogeneous. The Fourier expansion of this u is 
u = (217)-3Sdkuk exp (ik.x+ax,), where k is real and uk denotes the k - Fourier 
transform of uo(x). 

Now, substitution of this Fourier expansion for the velocities in A we have after 
a little algebra 

n 

dk, dkb dk, dk, { ( 1  + T,)g3 - F(t, tl)  + F(t, t l ) .  2, [dtlA(t-tl) = ~ ~ d l l ~  (217)'Z 

where u,(t) is the k, Fourier transform of uo(x,  t ) ,  the asterisk denotes the complex 
conjugate, and exp [ - vk2(t- t , ) ]  comes from the operator G, ( t - t l )  acting on 
exp[ik,.x+ikd.x] - with kc+k, denoted by k. 

The fourth moment F can be expressed, approximately, in terms of second 
moments by the cumulant expansion 

(u,*u,*[uc* (ikd +a)udl') = ( z a ( t ) u c ( t l ) ) *  (ik, (t)Ud ( t l ) )  

+ ( u x  (t)Ud (tl))(ikd (tl)U,* ( t ) )  + Q ( 4 ) ( t ,  tl)> (B 3, 

where Q(4) is the fourth-order cumulant of the correlation on the left-hand side 
of (B 3). Substitution of ( B 3 )  in (B 2) and using the homogeneity condition 
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(uz (t)u,(t,)) = (uz (t)u, (t,))V-'6(k,-kc), (since uo is a homogeneous field), 
where S is the Dirac delta function and V-l is the volume of the system, we have 

dk, dk, 
(1  + T,) [a,.S,. (ik, + a)S,  

where Q(4) = Q(4)(t , t l )  denotes all the fourth-cumulant terms in the integrand of 
(B 2) when F is expanded as in (B 3). No attempt is made to calculate Q(4) here. It 
is important for us to emphasize that (B 4) is a more accurate expression than is 
normally found in most applications of two-point closures since the main contribution 
to the integrals in (B 4) come from the energetic part of the spectrum a t  short times 
where two-point closures are most accurate. This is the advantage of applying two- 
point closures directly to evaluate single-point moments such as A. 

To complete the derivation of A,  we need the two-time moments S, = S,(t, t,) for 
small values of ( t - t , )  - the large ( t -  t,) values do not matter much since the main 
contribution to the t ,  integral comes from ( t - t l )  less than the exponential decay time 
(autocorrelation time). In the absence of stratification, the small ( t  - t , )  behaviour 
is given by S, = Si e~p[ -$~v i ( t - t , )~ ]  (e.g. Kraichnan 1966, 1959; Riley & 
Patterson 1974; Weinstock 1981) where S: = (u,* (t,)u, (t ,)) V-l is the single-time 
moment and vn2 5 (u.u)/3 is mean-square fluctuating velocity along some direction. 
However in a stably stratified fluid the two-time moment is more complicated. 

It may be approximated by (Weinstock 1986, 1978) 

where It-t,l is less than the decay time, w, is the frequency of a gravity wave whose 
wavevector is k ,  k, denotes the vertical component of k ,  and H E H ( P )  is the 
Heavyside step-function which is inserted to ensure that the gravity wave frequency 
is to be disregarded (set equal to zero) when the stratification is unstable. This 
expression can be verified in the limits of both weak stratification and strong 
stratification ; i.e. in the weak stratification limit we have k2v i  $ w i  and the right- 
hand side of (B 5) approaches S: exp [-$k2vi] as i t  should, while in the strong 
stratification limit we have k2vi + w i  and the right-hand sidc of (B 5) approaches 
S: exp [iw, ( t - t , ) ]  - a gravity wave - as it should. In the case of unstable 
stratification, gravity wave oscillations do not occur and S, is the same as for the 
unstratified cases. 

The t, integral in (B 4) can be evaluated approximately by substitution of (B 5) for 
S, and S, and making use of the fact the intcgrand has a peak maximum when k, 
and k, arc in thc vicinity of thc characteristic wavevector k,. Afterwards, the k, and 
k, integrations can be performed by making use of 

SO, exp (Sax,) = (uu),  (ik,+a)S: exp (Sax,) = iV(uu). 



A theory of turbulent transport 335 

These integrations reduce (B 4 )  to 

1 dt, A (t  - t,) = 70( 1 + T,)( (u,u) - V(uu)  + ~ ( u u )  - V(u,u))  + 
2 

R, = (4/n); wo/vk,. 
(fi/4)k0W,,( 1 + R;’) 

7, = 
l7iVH/2 + ki wi( 1 +R,,-1)27 

(In arriving a t  (B 6) we have made a simplifying approximation for the values of 
win and uib in the energetic part of the spectrum-an approximation for the 
integrated value of (1  - k t , / k i )  and (1  - k&/k i )  - since these quantities depend on the 
anisotropy of the spectrum. These u2 values lie between QP, for an isotropic 
spectrum, to near zero for a strongly anisotropic spectrum. We have been able to 
justify a mean value +iP as never introducing more than a small error in 7, since kiwi 
is larger than uio (although k,w, may be less than N )  for cases of interest; i.e. if kiwi 
is appreciably less than uio the turbulence is ‘collapsed’ and Ao and the vertical flux 
(u,uu) are practically zero.) The value of k, is related to  6,  the energy dissipation 
rate, by means of the convenient spectral model (e.g. Reynolds 1976) 

-,  -$-m k ,  m k < k , ,  

where 01 z 1.5 is the Kolmogoroff constant, the number m is an adjustable parameter 
larger than - 1 that  characterizes the energy-containing region of the spectrum, and 
k,  is the viscous ‘cut-off’ wavenumber. Since q2 = 2J$dkI#(k), we have k, given by 

k, W, = 6&/q2 (R 7) 

for m x 1 and k,  % k, (large Reynolds number). 
Finally, since (uu)  does not vary with xl, or x 2 ,  (B 6) reduces to 

(B 8) 

ldtlA(t-t ,)  = 70 

which is (2.7) as we set out to prove. 

B.2. The derivation of other two-time correlations 

The derivation of 1 dti (u3(t)u(t)G,(t-t1)Vp(t1)) = 7 0  (’3uvP) (B 9) 

and other two-time correlations in (2.5) is similar to the derivation of (2.7) just given 
in SB.1. To first order in the mean field gradients, we can outline this derivation 
briefly as follows: we note from (2.11) that V p  can be divided into a ‘slow’ part pCs)  
which is second order in the velocity fluctuation, and ‘fast’ parts p(u) and p(@) which 
are first order in velocity fluctuation or in temperature fluctuation. The slow part 
gives us the correlation (u3(t)~(t)G,(t-tl)VpcS)(tl)) in (B 8) which is a fourth-moment 
in velocity. 

Such a moment was calculated in SB.1 and the same arguments applied to our 
slow-term correlation gives us (B 8) with p replaced by p@) and Q(4) neglected. In 
other words, SB.1 gives (B 8) for the slow part of p. 
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For the fast velocity part p(r') we have (u,(t)u(t)C;l,,(t- t l)Vp(")(t l))  which is a third 
moment velocity correlation multiplied by the mean velocity gradient V U. Hence. to 
first order in mean field gradients, the third moment need only be evaluated to 
zeroth order. To that order, (2.3) simplifies to 

~ ( t )  = ~ ( 0 ) -  dt, [ ( u * V ~ ) ' + V p ( ~ ) / p , ]  1 
which upon substitution into the third moment yields a fourth moment plus an 
initial value term. But the initial value term is negligible when t is large, and 
consequently, only the fourth moment remains-to lowest order in mean field 
gradients when t is large. But, again, the same kind of fourth moment was calculated 
in SB.1 and helps us establish (B 8) for the fast part p('). 

The same arguments hold for the fast part p(@ since, to zeroth order in mean field 
gradients, the thermodynamic equation (F2) allows ( u ,  uGVp(*)) to be expressed as 
a fourth moment in velocity and temperature ; i.e. the thermodynamic equation 
yields O ( t )  = - J dt, (u-VO) so that p'") a u-VO. Such a fourth moment is calculated in 
Appendix F, SF.1, and shown to be of the form (B 8) with p replaced by p(@.  Hence 
(B 8) is valid for all parts of p to first order in mean field gradients. 

In sum, we have argued that our two-time correlations can be expressed as a sum 
of third and fourth moments and that, to lowest order in mean field gradients, the 
third moments can be expressed in terms of fourth moments. 

Consequently, our two-time correlations can all be expressed as fourth moments - 
to first order in mean field gradients-and such moments are shown to be of the 
form (B 8) by Appendices B and F, SSB.1 and F.l, with Q(4) neglected. 

Appendix C 
Equations (2.15), (2.26), (2.27) and (2.28) constitute a set of linear algebraic 

equations for the fluxes ( u i ) ,  (u:u,), (u:O), and (u302) in terms of the second 
moments (u i ) ,  (u;), (u,u3), (u30),  (u,O), and (02)>. The solution is obtained in a 
straightforward but lengthy manner by combining the equations so as to eliminate 
all bu t  one flux. This prcedure is repeated for each flux. For simplicity, terms of order 
(g/0,)2 and some terms of order (g /0 , ) ( i3Uo/ax , )2  are neglected in A, to A , -  the 
coefficients of the (u,uI) flux. The resulting solution is given in a (convenient) matrix 
form by (2.29) with the coefficients Ai defined as follows: 

1 7 g  A - - ( U ; ) - L - ( U , O ) ,  
5 - R 4  3R, 0, 



A theory of turbulent transport 337 

3R, 0, ax, 

270 9 A,  = ---(U1U3), 
3R, 0, 

R, = 3+33V,  R, = 3 + 7 v  ( 1-- “?), R 3 = 3 + $ w ,  

2?3 au, 
9 ax, R, = 3+33V--oN2-. 
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